Zebrafish foxP2 Zinc Finger Nuclease Mutant Has Normal Axon Pathfinding
نویسندگان
چکیده
foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA) of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd) coding exon: a 17 base-pair (bp) deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.
منابع مشابه
huckebein specifies aspects of CNS precursor identity required for motoneuron axon pathfinding
huckebein encodes a putative zinc finger protein expressed in a subset of Drosophila CNS precursors, including the NB 4-2/GMC 4-2a/RP2 cell lineage. In huckebein mutant embryos, GMC 4-2a does not express the cell fate marker EVEN-SKIPPED; conversely, huckebein overexpression produces a duplicate EVEN-SKIPPED-positive GMC 4-2a. We use Dil to trace the entire NB 4-2 lineage in wild-type and hucke...
متن کاملZebrafish mutations affecting retinotectal axon pathfinding.
We have isolated mutants in the zebrafish Danio rerio that have defects in axonal connectivity between the retina and tectum. 5-day-old fish larvae were screened by labeling retinal ganglion cells with DiI and DiO and observing their axonal projections to and on the tectum. 82 mutations, representing 13 complementation groups and 6 single allele loci, were found that have defects in retinal gan...
متن کاملZinc fingers poke zebrafish, cause thrombosis!
In this issue of Blood, Liu et al describe the creation of a null mutation for the antithrombin III gene (at3) in zebrafish by using zinc finger nuclease technology.
متن کاملAltered Behavioral Performance and Live Imaging of Circuit-Specific Neural Deficiencies in a Zebrafish Model for Psychomotor Retardation
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associat...
متن کاملMotoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that th...
متن کامل